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In this paper we present a numerical method for solving a three-dimensional cold-plasma
system that describes electron gas dynamics driven by an external electromagnetic wave
excitation. The nonlinear Drude dispersion model is derived from the cold-plasma fluid
equations and is coupled to the Maxwell’s field equations. The Finite-Difference Time-
Domain (FDTD) method is applied for solving the Maxwell’s equations in conjunction with
the time-split semi-implicit numerical method for the nonlinear dispersion and a physics
based treatment of the discontinuity of the electric field component normal to the dielec-
tric-metal interface. The application of the proposed algorithm is illustrated by modeling
light pulse propagation and second-harmonic generation (SHG) in metallic metamaterials
(MMs), showing good agreement between computed and published experimental results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The cold-plasma equations are fundamental hydrodynamic transport equations that describe the mass and momentum
conservation of the plasma under the excitation by an external electromagnetic wave governed by the Maxwell’s equations
[1]. This model has been successfully applied to study electromagnetic wave propagation in plasmas. Recently, a classical
theory based on the cold-plasma equations was developed to study the nonlinear optical response from metallic metama-
terials (MMs) consisting of periodic arrays of metallic nanostructures [2]. The electrons inside the metal can be approxi-
mated as continuous electron gas, and the external electromagnetic wave is governed by the Maxwell’s equations. This
work was motivated by recent experiments of second-harmonic generation (SHG) from metallic MMs [3–6]. The SHG has
been found to be the strongest when the non-centro-symmetric U-shaped metallic split-ring resonators (SSRs) were excited
resonantly [4], in comparison to other structures, such as T-shaped and rectangular metal pieces. For centro-symmetric
structure such as an array of metallic rectangular sections, the detected second-harmonic strength is much smaller (less than
1%) than that from U shapes. In [2,7], numerical simulations were carried out by expanding electric and magnetic fields as
well as charge and current densities into first-order linear response and second-order nonlinear response. Numerical results
yielded good agreement with experiments and showed that the major contribution source of the SHG is the convective
derivative term in the cold-plasma equations. It should be pointed out that the model proposed in [2] focuses on studying
. All rights reserved.
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the contribution from the metal bulk structure with normally incident light, while the hydrodynamic model developed sev-
eral decades ago examines the SHG at flat metal surfaces with obliquely incident light [8,9].

The Finite-Difference Time-Domain (FDTD) method (Yee’s scheme), that was originally designed for non-dispersive lin-
ear dielectric materials, has been successfully and widely used to model electromagnetic waves for more than four dec-
ades [10–12]. By using the auxiliary differential equation (ADE) technique, the FDTD method has been extended to model
more complicated materials, such as dispersive and nonlinear media. For linear dispersive materials, the electric permit-
tivity �(x) is a function of frequency, and the ADE can be derived by transforming the polarization equation P = �(x)E
from frequency domain into time domain, for example, the linear Debye, Drude and Lorentz models can be derived using
this approach [13]. For nonlinear materials, such as the Kerr and Raman nonlinear dispersive media, the electric permit-
tivity depends on the intensity of the electric field, and appropriate ADE FDTD methods with nonlinear driving terms were
developed in [14,15].

In this paper, we show that the model based on the cold-plasma equations, that was proposed in [2], is a generalization of
the linear Drude model to the nonlinear case, and thus we refer to this model as nonlinear Drude model. It is based on the
classical hydrodynamic theory for electrons. The full coupled fluid-Maxwell system of equations is approximated numeri-
cally without the expansion into orders of the exciting electric field as applied in [2]. In our numerical method the nonlinear
Drude fluid equations for the current density J are solved using a time-split semi-implicit finite difference algorithm. A crit-
ical issue in the numerical design is a physics based treatment of the discontinuity of the normal electric field component at
the dielectric-metal interface. It has been pointed out in [8] that the computation of electron charge density (r � E) at the
dielectric-metal interface is ambiguous due to the discontinuity of the normal electric field. To overcome this critical prob-
lem, we introduce a transition layer with smoothed ion distribution between metal and the surrounding dielectric media as
suggested by the quantum theory. This regularization provides continuous normal electric field so that the computation of
r � E is physical and the singularity is eliminated. To illustrate the performance of the proposed algorithm we applied it to
the problem of SHG emitted by a single periodic layer of gold nanostructures on glass. Our numerical simulations in a three-
dimensional computational domain yield good agreement with the experimental result in [3,4] and the numerical results
based on the asymptotic theory reported in [2].

The paper is organized as follows. In Section 2, we introduce the nonlinear Drude model that describes the motion of the
electrons inside the metallic dispersive media. Time-split numerical method for solving the nonlinear Drude fluid model is
described in Section 3. In Section 4, we investigate the accuracy of the numerical solution and the resolution requirements
resulting from the introduction of the transition layer at the dielectric-metal interface. In Section 5, we present results of the
numerical simulations of the optical pulse propagation and SHG in metallic MMs and compare the computed results with the
published experimental data.
2. The Nonlinear Drude model

The nonlinear Drude model for modeling nonlinear dispersive media is derived from the cold-plasma equations and is
coupled to the Maxwell’s field equations [2]. The cold-plasma equations for the electron density ne and velocity ue and
the Maxwell’s equations for electromagnetic fields E and B are given by
@ne

@t
þr � ðneueÞ ¼ 0; ð1Þ

@ue

@t
þ ðue � rÞue ¼

qe

me
ðEþ ue � BÞ; ð2Þ

r � B ¼ 0; ð3Þ
�0r � E ¼ q; ð4Þ
@B
@t
¼ �r� E; ð5Þ

�0
@E
@t
¼ 1

l0
r� B� J; ð6Þ
where me,qe,�0 and l0 are the electron mass, electron charge, vacuum permittivity and vacuum permeability, respectively,
and the electron number density and velocity field are denoted by ne(r) and ue(r). Eq. (1) is the continuity equation and Eq.
(2) is the generalization of the Newton’s second law. Eqs. (3)–(6) are the Maxwell’s equations. The charge density q and the
current density J are defined as
q ¼ qeðne � n0Þ; ð7Þ
J ¼ qeneue; ð8Þ
where n0 is the positive ion density which is assumed to be constant in time. Initially, before the exciting field comes in, also
the electron density is equal to n0 in order to ensure charge neutrality. By rewriting Eqs. (1) and (2) in terms of the charge
density q and current density J using the convective derivative, we obtain
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@q
@t
¼ �r � J; ð9Þ

@J
@t
þ
X

k

@

@xk

J Jk

qene
¼ qe

me
ðqeneEþ J� BÞ � 1

s
J; ð10Þ
where s is the phenomenological damping time constant. The term J/s is added to describe the current decay due to Coulomb
scattering. Eq. (9) can be derived from Eq. (6) by taking its divergence. As a result, Eqs. (9) and (10) can be reduced to the
following equation
@J
@t
¼ �1

s Jþ �0x2
pEþ qe

me
qEþ J� Bð Þ �

X
k

@

@xk

J Jk

qþ �0mex2
p=qe

 !
; ð11Þ
where xpðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

e n0ðrÞ=ð�0meÞ
p

is the space-dependent plasma frequency. The last two terms on the right hand side of Eq.
(11) introduce the nonlinearity into the system, while the first two correspond to the linear Drude model for dispersive med-
ia [13]
@J
@t
¼ �1

s
Jþ �0x2

pE:
3. The Numerical method for nonlinear Drude model

In this section, we present a numerical method for solving the system of Eqs. (5), (6) and (11). The Maxwell equations (5)
and (6) are solved using the FDTD method [10,11,13] and the nonlinear Drude equation (11) is solved using a time-split
semi-implicit finite difference method. Microscopically, no magnetic resonances exist in our model such that B = l0H in
the whole paper.

3.1. The computational grids

The computational grid follows the standard staggered Yee mesh. The electric field E, magnetic field H and current den-
sity J are staggered both in space and time. The position of Js is the same as of Es in space and the same as for Hs in time. The
r � E terms are first calculated at the cell centers and then interpolated to the position where Es are defined. When updating
J, our numerical method requires all components of J to be collocated, which is achieved by the interpolation of Js to cell
centers. A computational cell with lower-left corner (i, j,k) and upper-right corner (i + 1, j + 1, k + 1) is shown in Fig. 1. In this
grid cell, E components are defined at time level n and are located at the computational cell face centers:
En

x i;jþ1=2;kþ1=2; En
y iþ1=2;j;kþ1=2, and En

z iþ1=2;jþ1=2;k; H components are defined at time level n + 1/2 and are located along the edges

of the computational cell: Hnþ1=2
x iþ1=2;j;k; Hnþ1=2

y i;jþ1=2;k, and Hnþ1=2
z i;j;kþ1=2; components of J are defined at time level n + 1/2 and are located

at the face centers of the computational cell: Jnþ1=2
xi;jþ1=2;kþ1=2; Jnþ1=2

yiþ1=2;j;kþ1=2, and Jnþ1=2
ziþ1=2;jþ1=2;k. The r � En terms are computed at the

cell centers as
r � En
iþ1=2;jþ1=2;kþ1=2 ¼

DEn
x

Dx
þ

DEn
y

Dy
þ DEn

z

Dz
; ð12Þ
Fig. 1. Positions of the field components in a computational cell.
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where
DEn
x ¼ En

x iþ1;jþ1=2;kþ1=2 � En
x i;jþ1=2;kþ1=2;

DEn
y ¼ En

y iþ1=2;jþ1;kþ1=2 � En
y iþ1=2;j;kþ1=2;

DEn
z ¼ En

z iþ1=2;jþ1=2;kþ1 � En
z iþ1=2;jþ1=2;k:
3.2. Numerical discretization of the nonlinear Drude equations

A time-split semi-implicit finite difference method is employed to discretize the nonlinear Drude equation (11) by split-
ting it into the following three subproblems:
@J
@t
¼ �1

s
Jþ �0x2

pEþ qe

me
�0ðr � EÞE; ð13Þ

@J
@t
¼ qe

me
J� B; ð14Þ

@J
@t
¼ �

X
k

@

@xk

J Jk

qþ �0mex2
p=qe

 !
: ð15Þ
The algorithm proceeds as follows. First, using Eq. (13), we update J from time level n � 1/2 to n + 1/2 utilizing an implicit
time update with respect to J and explicit central differencing for other terms. We obtain
Jð1Þ � Jn�1=2

Dt
¼ � Jð1Þ þ Jn�1=2

2s
þ �0x2

pEn þ qe

me
�0 r � Enð ÞEn; ð16Þ
where J(1) is the intermediate updated value of J at time level n + 1/2. The r � En term is evaluated as described in Eq. (12).
Since it is needed at the same grid positions as the electric field, the divergence is interpolated. For example, for the x-com-
ponent of E, defined at (i, j + 1/2, k + 1/2), we have
r � En
i;jþ1=2;kþ1=2 ¼

1
2
r � En

iþ1=2;jþ1=2;kþ1=2 þr � En
i�1=2;jþ1=2;kþ1=2

� �
:

Eq. (16) can be solved explicitly for updating J(1),
Jð1Þ ¼
s� Dt

2

sþ Dt
2

Jn�1=2 þ sDt
sþ Dt

2

�0 x2
pEn þ qe

me
ðr � EnÞEn

� �
: ð17Þ
Second, we apply an implicit scheme to solve the second Eq. (14). Before updating this equation, we interpolate compo-
nents of J to the cell centers. Similarly, H is interpolated to cell center in space, and also in time to time level n. For example,
at cell center (i + 1/2, j + 1/2, k + 1/2), bHn

x and bJx are interpolated using arithmetic averaging as follows,
bJx ¼
1
2

Jð1Þx i;jþ1=2;kþ1=2 þ Jð1Þx iþ1;jþ1=2;kþ1=2

� �
;

bHn
x ¼

1
2
bHnþ1=2

x þ bHn�1=2
x

� �
;

bHp
x ¼

1
4

Hp
x iþ1=2;j;k þ Hp

x iþ1=2;jþ1;k þ Hp
x iþ1=2;j;kþ1 þ Hp

x iþ1=2;jþ1;kþ1

� �
;

where p = n ± 1/2 and J(1) is the solution obtained from the previous step of updating Eq. (13). The advantage of collocating Js
and Hs is that it avoids solving a large matrix system. The resulting implicit method requires a solution to the following 3 � 3
linear system at each cell center:
Jð2Þ � bJ
Dt

¼ qe

me
l0

Jð2Þ þbJ
2
� bHn; ð18Þ
or in matrix form:
A Jð2Þ ¼ A0bJ; ð19Þ
where
A ¼
1 �aHz aHy

aHz 1 �aHx

�aHy aHx 1

0B@
1CA;
A
0

represents the transpose of A; bHn ¼ ðHx;Hy;HzÞ0 and a ¼ 1
2 Dtl0qe=me. The explicit solution of Eq. (19) is
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Jð2Þ ¼ A�1A0bJ
¼ 1
jAj

1þ a2ðH2
x � H2

y � H2
z Þ 2aðaHxHy þ HzÞ 2aðaHzHx � HyÞ

2aðaHxHy � HzÞ 1þ a2ðH2
y � H2

z � H2
x Þ 2aðaHyHz þ HxÞ

2aðaHzHx þ HyÞ 2aðaHyHz � HxÞ 1þ a2ðH2
z � H2

x � H2
yÞ

0BB@
1CCAbJ; ð20Þ
where jAj ¼ 1þ a2ðH2
x þ H2

y þ H2
z Þ.

The final step is to update Eq. (15), which can be written as nonlinear hyperbolic system in conservation form
@J
@t
þ ðFðJÞÞx þ ðGðJÞÞy þ ðKðJÞÞz ¼ 0; ð21Þ
where F(J) = J Jx/q
0
, G(J) = J Jy/q

0
, K(J) = J Jz/q

0
, and q0 ¼ qþ �0mex2

p=qe. Eq. (21) is a system of hyperbolic equations [16], and
we apply a two-step Lax–Wendroff scheme [17] to solve it. The time step is chosen to satisfy the CFL conditions for both the
hyperbolic system (15) and the Maxwell’s equations (with an additional factor of 2) as Dt < Dx/(2 max (Vmax,c)), where c is
the speed of light in vacuum and Vmax=maxjJ/q0 j is the maximum wave speed in the plasma. After Eq. (15) has been updated,
all components of the current density J are interpolated back to their original locations at the cell face centers and are ready
to be used by the FDTD method for updating the E field. The linear time-splitting in this implementation results in a first
order scheme. The three-step splitting scheme is chosen for simplicity and efficiency of the implementation. In particular,
we obtain a small 3 � 3 system instead of a large matrix equation involving the whole system. The computation of a local
3 � 3 system is explicit and is much cheaper than the solution of a large matrix of the size of the whole computational do-
main times the number of variables involved, three Es, three Bs and three Js. The stability of the Maxwell equations as of any
hyperbolic system is not affected by lower order terms or sources as long as the evolution of sources is done stably itself
[18,19]. The Yee scheme preserves the divergence free condition (3) for any J (x, t) due to preservation of r� (r/) = 0
and r � (r� v) = 0 (/ is a scalar and v is a vector) for discrete approximations of these differential operator.
4. Regularization of dielectric-metal interface

At the dielectric-metal interface the normal components of the electric field and the current density are discontinuous. As
a result, the computation of electron charge density (r � E) at the dielectric-metal interface is ambiguous. For example, eval-
uating r � E using the fields on both sides of the interface on a given mesh in most cases will produce non-physical results.
Therefore, when the nonlinear Drude model is applied to media with the dielectric/nonlinear dispersive material interfaces,
the computation of the electric charge requires a regularization procedure. In particular, a metal-vacuum selvedge method
[8] and a smooth Jellium model [20,9] were proposed for the metal-vacuum interface regularizations based on the quantum
theory. The metal-vacuum selvedge method introduced a selvedge region between the metal and vacuum with the effective
current density in the selvedge treated as a delta function. In the Jellium model, the ion density n0 varies from its bulk value
to zero over a short distance on the order of the Fermi wavelength [20]. The works presented in [8,20,9] were designed for
flat metal surfaces. Recently, this model has been extended to non-flat periodically-structured metal surfaces with applica-
tion in studying SHG [21]. The method presented in [21] is based on the analytic parametrizations of the SHG and can be
solved either analytically or numerically by the FDTD method. Notice that these models are based on the parametrizations
of the SHG, which is different from our work based on solving numerically the full cold-plasma Maxwell system.

In this paper, we apply a smooth transition layer between the metal and dielectric materials. Similar to the previously
proposed Jellium model, we allow the ion density to vary from its bulk value to zero smoothly within the transition layer.
Assuming the dielectric-metal interface is normal to the x-direction and the transition layer interval is of fixed width,
x 2 (�1,1). n0(x) is given by the following function:
n0ðxÞ ¼
nbulk x 6 �1;
f ðxÞ � nbulk �1 < x < 1;
0 x P 1;

8><>: ð22Þ
where n0(x) is the ion density near the dielectric-metal interface, nbulk ¼ x2
p�0me=q2

e is the bulk ion density in the metal and
f (x) gives the ion distribution in the transition layer. A simple choice of f (x) is a linear polynomial f ðxÞ ¼ 1

2 ð1� xÞ.
We test our approach by studying the transmission of an optical pulse through thin metal layers. The simulated metallic

structures are rectangular or L-shaped in the x � y plane, infinitely long in the z-direction. In addition, the structure is peri-
odically replicated in the x-direction. The dimensions of the metal structures are shown in Fig. 2. The metal is modeled using
the nonlinear Drude model with plasma frequency xp = 1.367 � 1016 s�1 and phenomenological damping time constant
s = 15.44 fs, see [22]. The rest of the computational domain is vacuum. The incident light is a z-polarized Gaussian pulse with
carrier wavelength k = 1200 nm, peak amplitude E0 = 2 � 107 V/m, propagating along the y-direction. The light source is gen-
erated by total-field/scattered-field (TFSF) method [13]. Periodic boundaries are used in the x-direction and the perfectly
matched layer absorbing (PML) boundaries [23,13] are applied in the y-direction.

Fig. 3 shows the regularized ion distribution near the L-shaped nanostructure, in comparison with the non-regularized
results. The transition layer allows the ion density n0 to decay from its bulk value in the metal to zero in dielectric medium.



Fig. 2. Two-dimensional computational domain for SHG problem for (a) L-shaped, (b) rectangular gold nanostructures. The units shown are in nm.
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Fig. 3. One dimensional cuts along the x-axis at y = 50 nm for (a) regularized, (c) non-regularized relative ion distribution n0=x2
p near the L-shaped metallic

nanostructure. The corresponding contour plots are shown in (b) and (d), respectively.
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With this regularization, as shown in Figs. 4 and 5, the normal electric field and normal current density are smoothed, thus
regularizing the computation of the charge density q = �0r � E. Notice that the non-regularized normal electric field has
sharp discontinuity at the dielectric-metal interface, so the numerical computation of ther � E is proportional to 1/Dx, which
will eventually go to positive or negative infinity.

To characterize the linear response and the second-harmonic signal we compute the Ez and Ex components of the trans-
mitted electric field. We measure the transmission of the linear response showing the Ez component of the electric field and
for the second-harmonic signal we provide the Ex. For rectangular shape, our numerical result shows no SHG, which is in
agreement with the known fact that the centro-symmetry of the structure prohibits the SHG. Fig. 6 shows the time history
(in time domain and in frequency domain) of the incident pulse, linear and nonlinear responses for the L-shaped MMs. In
Fig. 6(d), both the second-harmonic wave (at wavelength 600 nm) and the third-harmonic wave (at wavelength 400 nm)
are detected.

The thickness of the transition layer, as suggested by Drude, should equal to the lattice constant of the metal crystal [24].
For gold it is about 0.32 nm. To resolve this layer in our finite-difference simulation, the grid size therefore cannot be bigger
than 0.16 nm, that is, half of the layer thickness. This fine mesh requires a computational burden far beyond our current
capacity. The smallest grid cell we can afford is 0.5 nm, we therefore set the transition layer thickness to at least 1 nm. To
study its influence, we have fixed the grid size (Dx = Dy = D = 0.5 nm) and varied the transition layer thickness from
10 nm to 1 nm, keeping it resolved with at least two grid-points for the narrowest case. As shown in Fig. 7(a), as the tran-
sition layer thickness decreases from 10 nm to 1 nm, the SHG strength decreases continuously. It is also shown that the case
of a 5 nm transition layer already provides an acceptable accuracy. With the transition layer thickness fixed at 10 nm, in
Fig. 7(b) we show the convergence of the amplitude of the second-harmonic signal as the mesh size tends to zero. The finest
grid result with D = 0.5 nm and 10 nm thick transition layer is used as the reference solution. For a 10 nm thick transition
layer, the simulation with a cell size of 5 nm (1/2 of the transition layer) provides a reasonable result within 80% of the ref-
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Fig. 5. One dimensional cuts along the x-axis at y = 50 nm for (a) regularized, (c) non-regularized normal current density Jx near the L-shaped metallic
nanostructure. The corresponding contour plots are shown in (b) and (d), respectively.
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erence case, while the cell size of 2 nm (1/5 of the transition layer) leads to the answer within 90% of the reference solution.
The extrapolated value at Dx = 0 nm is 0.01, which provides a solution within 98% accuracy.

5. Numerical simulation of SHG from metallic metamaterials

In this section, we study the SHG from metallic MMs and compare our numerical results with physical experiments pre-
sented in [3,4]. The three-dimensional computational domain shown in Fig. 8(a) has periodic boundaries in x- and y-direc-
tions and perfectly matched layer (PML) absorbing boundaries in the z-direction. The gold nanostructures are arranged
periodically in the x�y plane and they are supported by glass substrate coated with a thin film of indium-tin-oxide (ITO)
[3]. The thickness of the gold structures and the ITO layer are 25 nm and 5 nm, respectively. The ITO layer and the glass sub-
strate are dielectric materials and their relative permittivities are 3.8 and 2.25, respectively. The incident Gaussian pulse is x-
or y-polarized and propagates along the z-direction. The carrier wavelength and amplitude are k = 1500 nm and
E0 = 2 � 107 V/m, respectively. The x�y cross sections of the modeled U-shaped, T-shaped and rectangular gold nanostruc-
tures are shown in Fig. 8(b). The parameters of gold are the same as in the previous section (xp = 1.367 � 1016 s�1 and
s = 15.44 fs).

In our simulations we used a uniform grid with Dx = Dy = Dz = 2.5 nm. To speed up the turn around time due to compu-
tational intensity of the model, we have used a 10 nm thick transition layer. Fig. 9 shows the time history (in time domain
and in frequency domain) of the incident pulse, linear and nonlinear responses for the U-shaped MMs by x-polarized incident
pulse. The results of our computation are summarized in Table 1 in terms of the energy conversion efficiency of SHG defined
as
g2 ¼
ffiffiffiffiffiffiffiffiffiffi
�glass

p E2ð2xÞ
EiðxÞ

���� ����2;
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Fig. 8. (a) The computational domain for light pulse propagation through three dimensional gold nanostructures with ITO and glass substrates; (b) x � y
cross-sections of U-shaped, T-shaped and rectangular gold nanostructures (units shown in nm).
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5930 J. Liu et al. / Journal of Computational Physics 229 (2010) 5921–5932



Table 1
Comparison between experimental and numerical results on SHG conversion efficiency. The signal for U-shaped structure and x-polarized incident light is
normalized to 100%, and all other signals are related to this value.

MMs Polarization SHG Conversion Efficiency

Incident SH Experimental Numerical

U x y 2 � 10�11(100%) 1.05 � 10�11(100%)
U y y 1% 2.1%
T x x 1% 1.8%
rectangle x y 1% 0
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where Ei is the incident pulse amplitude, E2 is the second-harmonic signal. The
ffiffiffiffiffiffiffiffiffiffi
�glass
p

is added to account for the fact that the
second-harmonic wave is measured inside the infinite-thick glass substrate [25]. We have normalized the SHG signals for U-
shaped structures illuminated by the x-polarized incident light to 100% and relate all others to this value. For U-shaped MMs
illuminated by x-polarized incident light, the SHG conversion efficiency computed by our model is 1.0 � 10�11, which is close
to the experimental results (�2.0 � 10�11) and the calculated value in [2] (6.7 � 10�11). The experimental results (Table 1)
are taken from [3–5]. Notice that the absolute value of SHG conversion efficiency reported in [4] has been corrected in the
erratum [5]. Our numerical results on the SHG for other structures also yield good agreement with experiments.
6. Conclusion

We have presented a time-split numerical method for solving the cold-plasma Maxwell system. The cold-plasma equa-
tions for modeling hydrodynamic nonlinear dispersive Drude media were coupled in a stable and accurate algorithm to the
standard FDTD method for the Maxwell’s equations. We have also successfully introduced a transition layer technique that
addresses the critical issue of the physical treatment of the discontinuity of the normal electric field component at the dielec-
tric-metal interface. The application of the newly proposed method was illustrated by modeling light propagation in com-
plex media to study the second-harmonic generation (SHG) from metallic metamaterials (MMs) and have yielded a good
agreement with experiments.
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